Day 20

Kalman Filter

3/2/2011

Plant or Process Model

 describes how the system state changes as a function of time, control input, and noise

$$x_{k+1} = \Phi x_k + \Gamma u_k + v_k$$

- x_k state at time k
- u_k control inputs at time k
- \triangleright v_k process noise at time k
- $\blacktriangleright \Phi$ state transition model or matrix
- Γ control-input model or matrix

Measurement Model

 describes how sensor measurements vary as a function of the system state

$$z_k = \Lambda x_k + w_k$$

- z_k sensor measurement at time k
- \mathbf{W}_k sensor noise at time k
- \blacktriangleright Λ observation model or matrix

Tank of Water

- estimate the level of water in the tank; the water could be
 - static, filling, or emptying
 - not sloshing or sloshing

Tank of Water: Static and Not Sloshing

Tank of Water: Static and Not Sloshing

- notice that in this case the Kalman filter tends towards estimating a constant level because the plant noise covariance is small compared to the measurement noise covariance
 - the estimated state is much smoother than the measurements
- what happens if we increase the plant noise covariance?

Tank of Water: Static and Not Sloshing

- notice that in this case the Kalman filter tends towards estimating values that are closer to the measurements
- increasing the plant noise covariance causes the filter to place more weight on the measurements

- suppose the true situation is that the tank is filling at a constant rate but we use the static tank plant model
 - i.e., we have a plant model that does not accurately model the state transition

- notice that in this case the estimated state trails behind the true level
 - estimated state has a much greater error than the noisy measurements
- if the plant model does not accurately model reality than you can expect poor results
 - however, increasing the plant noise covariance will allow the filter to weight the measurements more heavily in the estimation...

- it is not clear if we have gained anything in this case
 - the estimated state is reasonable but it is not clear if it is more accurate than the measurements
- what happens if we change the plant model to more accurately reflect the filling?

- notice that the estimated state is more accurate and smoother than the measurements
- what about the filling rate?

- notice that the estimated filling rate seems to jump more than the estimated level
 - this should not be surprising as we never actually measure the filling rate directly
 - > it is being inferred from the measured level (which is quite noisy)

Tank of Water: Static and not Sloshing

- can we trick the filter by using the filling plant model when the level is static?
 - hopefully not, as the filter should converge to a fill rate of zero!

Tank of Water: Static and not Sloshing

Tank of Water: Static and not Sloshing

